PERIOD-I

TOPIC

3

Constructions

3.1. CONSTRUCTION WITHOUT MEASUREMENT

(3) ACTIVITY 1

Aim: To draw parallel and perpendicular lines using a set square.
Materials Required: Set square, ruler, pencil.

- Divide the class in pairs.
- Instruction them to use a set square and ruler to draw parallel lines.
- Keep the set square on the ruler and draw $\overrightarrow{A B}$, now move the set square along the ruler as shown in figure.
- Draw $\overrightarrow{C D}$, observe $\overrightarrow{C D}$ is parallel to $\overrightarrow{A B}$

3.2. BISECTOR OF AN ANGLE

Bisecting an angle means drawing a ray in the interior of an angle such the angle is divided into two equal angles.

Construction of the Bisector of a Given Angle using a Pair of Compasses

An angle $\angle A Q B$ is given. Let us draw a ray $O X$, bisecting $\angle A Q B$.

Steps of Construction

Step 1: With Q as centre and any radius, draw an arc, cutting $\overrightarrow{Q A}$ and $\overrightarrow{Q B}$ at M and N respectively.

Step 2: With M as centre and radius more than half of $M N$, draw an arc. With centre at N and the same radius as before, draw another arc, cutting the previous drawn arc at a point R.

Step 3: Join $Q R$ and produce it to any point X. Then, ray $\overrightarrow{Q X}$ bisects $\angle A Q B$ into two equal angles, namely, $\angle A Q X$, and $\angle B Q X$.

3.3. CONSTRUCTION OF $75^{\circ}, 105^{\circ}, 135^{\circ}$ AND 150°

(a) Let us first revise the construction of $30^{\circ}, 45^{\circ}, 60^{\circ}$ and 90°.

(i) To construct an angle of 60°

Steps of construction

1. Draw any straight line $O A$.
2. With O as centre and any (suitable) radius, draw an arc to meet $O A$ at C.
3. With C as centre and same radius as in step 2, draw an arc to meet the previous arc at D.
4. Join O, D and produce it to B.

Then $\quad \angle A O B=60^{\circ}$.

(ii) To construct an angle of 30°

We observe that $\frac{0^{\circ}+60^{\circ}}{2}=30^{\circ}$, therefore, if $\angle A O B=60^{\circ}$ and $O E$ is the bisector of $\angle A O B$, then $\angle A O B=30^{\circ}$.

Steps of construction

1. Construct $\angle A O B=60^{\circ}$
2. With C as centre and any suitable radius (greater than half of $C D$), draw an arc. Also, with D as centre and same radius, draw another arc to meet the previous arc at E.
3. Join O, E and produce it to F. Then $O F$
 bisects $\angle A O B$.
Therefore, $\angle A O F=30^{\circ}$

(iii) To construct an angle of 90°

Steps of construction

1. Draw any straight line $O A$.
2. With O as centre and any suitable radius, draw an arc to meet $O A$ at C.
3. With C as centre and same radius, (as in step 2) draw an arc to meet the previous arc at D. With D as centre and same radius, draw another arc to meet the first arc at E.
4. With D and E as centres draw two arcs of equal radius (greater than half of $C D$),
 cutting each other at F.
5. Join O, F and produce it to B. Then $\angle A O B=90^{\circ}$

Note that: $\frac{60^{\circ}+120^{\circ}}{2}=\frac{180^{\circ}}{2}=90^{\circ}$
Here $\angle A O D=60^{\circ}$,

$$
\begin{aligned}
& \angle A O E=120^{\circ} \text { so that } \\
& \angle D O E=120^{\circ}-60^{\circ}=60^{\circ} \\
& \angle D O F=\frac{1}{2} \times 60^{\circ}=30^{\circ},
\end{aligned}
$$

because $O F$ is the bisector of $\angle D O E$.

$$
\begin{aligned}
\angle A O F & =\angle A O D+\angle D O F \\
& =60^{\circ}+30^{\circ}=90^{\circ}
\end{aligned}
$$

(iv) To construct an angle of 45°

We observe that $\frac{0^{\circ}+90^{\circ}}{2}=45^{\circ}$, therefore, if $\angle A O B=90^{\circ}$ and $O G$ is the bisector of $\angle A O B$, then $\angle A O G=45^{\circ}$

Steps of construction

1. Construct $\angle A O B=90^{\circ}$
2. With C as centre and any suitable radius greater than $\frac{1}{2} C F$, draw an arc. Also, with F as centre and same radius, draw another arc to meet the previous arc at G.
Note that: $\frac{0^{\circ}+90^{\circ}}{2}=\frac{90^{\circ}}{2}=45^{\circ}$

Here $O H$ is the bisector of $\angle A O B$,
3. Join O, G and produce it to H.

Then $\angle A O H=45^{\circ}$
(b) Now, let us construct angles of $75^{\circ}, 105^{\circ}, 135^{\circ}$, and 150°.

We observe that if $\angle A O B=\theta$ and $A O C=\phi$, then $\angle B O C=\angle A O C-\angle A O B$ $=\phi-\theta$. If $O D$ bisects $\angle B O C$, then

$$
\begin{aligned}
\angle B O D & =\frac{1}{2} \angle B O C=\frac{\phi-\theta}{2} \text { so that } \\
\angle A O D & =\angle A O B+\angle B O D \\
& =\theta+\frac{\phi-\theta}{2}=\frac{\theta+\phi}{2} .
\end{aligned}
$$

(i) To construct an angle of 75°

Note that: $\frac{60^{\circ}+90^{\circ}}{2}=\frac{150^{\circ}}{2}=75^{\circ}$

Steps of construction

1. Construct $\angle A O B=60^{\circ}$
2. Construct $\angle A O C=90^{\circ}$ then

$$
\angle B O C=90^{\circ}-60^{\circ}=30^{\circ}
$$

3. Let $O D$ be the bisector of $\angle B O C$, then $\angle B O D=\frac{1}{2} \times 30^{\circ}=15^{\circ}$, so that

$$
\begin{aligned}
\angle A O D & =\angle A O B+\angle B O D \\
& =60^{\circ}+15^{\circ}=75^{\circ}
\end{aligned}
$$

(ii) To construct an angle of 105°

Note that: $\frac{90^{\circ}+120^{\circ}}{2}=\frac{210^{\circ}}{2}=105^{\circ}$

Steps of construction

1. Construct $\angle A O B=90^{\circ}$
2. Construct $\angle A O C=120^{\circ}$ then $\angle B O C=120^{\circ}-90^{\circ}=30^{\circ}$
3. Let $O D$ be the bisector of $\angle B O C$ then $\angle B O D=\frac{1}{2} \times 30^{\circ}=15^{\circ}$, so that

$$
\begin{aligned}
\angle A O D & =\angle A O B+\angle B O D \\
& =90^{\circ}+15^{\circ}=105^{\circ}
\end{aligned}
$$

(iii) To construct an angle of 135°

Note that: $\frac{90^{\circ}+180^{\circ}}{2}=\frac{270^{\circ}}{2}=135^{\circ}$

Steps of construction

1. Construct $\angle A O B=90^{\circ}$
2. Produce $A O$ to C, then

$$
\begin{aligned}
& \angle A O C=180^{\circ} \\
& \text { and } \angle B O C=180^{\circ}-90^{\circ}=90^{\circ}
\end{aligned}
$$

3. Let $O D$ be the bisector of $\angle B O C$ then $\angle B O D=\frac{1}{2} \times 90^{\circ}=45^{\circ}$, so that

$$
\begin{aligned}
\angle A O D & =\angle A O B+\angle B O D \\
& =90^{\circ}+45^{\circ}=135^{\circ}
\end{aligned}
$$

(iv) To construct an angle of 150°

Note that: $\frac{120^{\circ}+180^{\circ}}{2}=\frac{300^{\circ}}{2}=150^{\circ}$

Steps of construction

1. Construct $\angle A O B=120^{\circ}$
2. Produce $A O$ to C, then

$$
\begin{aligned}
& \angle A O C=180^{\circ} \text { and } \\
& \angle B O C=180^{\circ}-120^{\circ}=60^{\circ}
\end{aligned}
$$

3. Let $O D$ be the bisector of $\angle B O C$, then $\angle B O D=\frac{1}{2} \times 60^{\circ}=30^{\circ}$,
so that

$$
\begin{aligned}
\angle A O D & =\angle A O B+\angle B O D \\
& =120^{\circ}+30^{\circ}=150^{\circ} .
\end{aligned}
$$

3.4. CONSTRUCTION OF TRIANGLES AND QUADRILATERALS

(a) Construction of Triangles
(i) To construct a triangle when the lengths of three sides are given

Example 1. Construct a triangle $A B C$ such that $A B=5.8 \mathrm{~cm}, B C=4.8 \mathrm{~cm}$ and $A C=3.5 \mathrm{~cm}$.

Steps of construction

1. Draw line segment $A B=5.8 \mathrm{~cm}$.
2. With B as centre and radius $=B C=4.8 \mathrm{~cm}$, draw an arc,
3. With A as centre and radius $=A C=3.5 \mathrm{~cm}$, draw an arc to cut the arc of step 2 at C.
4. Join $A C$ and $B C$.

Then $A B C$ is the required triangle.
(ii) To construct a triangle when two sides and the included angle are given
Example 2. Construct a triangle $A B C$ such that $A B=4.1 \mathrm{~cm}, B C=4.9 \mathrm{~cm}$ and $\angle B=120^{\circ}$.

Steps of construction

1. Draw line segment $A B=4.1 \mathrm{~cm}$.
2. At B, construct $\angle A B D=120^{\circ}$
3. From $B D$, cut off $B C=4.9 \mathrm{~cm}$
4. Join AC.

Then $A B C$ is the required triangle.

(iii) To construct a triangle when one side and two angles are given When two angles say $\angle A$ and $\angle B$ of a triangle $A B C$ are given, then since $\angle A+\angle B+\angle C=180^{\circ}$, the third angle $\angle C=180^{\circ}-\angle A-\angle B$ also becomes known.

Example 3. Construct a triangle $A B C$ such that $B C=7.5 \mathrm{~cm}, \angle B=45^{\circ}$ and $\angle C=60^{\circ}$

Steps of construction

1. Draw line segment $B C=7.5 \mathrm{~cm}$
2. At B, construct $\angle C B D=45^{\circ}$
3. At C, construct $\angle B C E=60^{\circ}$
4. Let $B D$ and $C E$ intersect at A.

Then $A B C$ is the required triangle.

Example 4. Construct an isosceles triangle $A B C$ having base $B C=6.8 \mathrm{~cm}$ and $\angle B=30^{\circ}$.

Since the base angles of an isosceles triangle are equal, therefore $\angle B=\angle C=30^{\circ}$

Steps of construction

1. Draw line segment $B C=6.8 \mathrm{~cm}$
2. At B, construct $\angle C B D=30^{\circ}$
3. At C, construct $\angle B C E=30^{\circ}$
4. Let $B D$ and $C E$ intersect at A.

Then $A B C$ is the required isosceles
 triangle.
(iv) To construct a quadrilateral when three sides and two diagonals are given
Example 5. Construct a quadrilateral $A B C D$ in which $A B=5.5 \mathrm{~cm}$, $A D=4.4 \mathrm{~cm}, C D=6.5 \mathrm{~cm}, A C=6.5 \mathrm{~cm}$ and $B D=7.1 \mathrm{~cm}$.

Steps of construction

1. Construct triangle $A B D$
2. Construct triangle $A C D$.
3. Join BC.

Then $A B C D$ is the required quadrilateral.

(v) To construct a parallelogram whose one side and both diagonals are given

To construct parallelograms, we use the following facts:

1. Opposite sides of a parallelogram are equal.
2. Diagonals bisect each other.

Example 6. Construct a parallelogram $A B C D$ given that $A B=4 \mathrm{~cm}$, $A C=4.6 \mathrm{~cm}$ and $B D=6.2 \mathrm{~cm}$.

Steps of construction

1. Construct triangle $O A B$ with

$$
\begin{aligned}
& A B=4 \mathrm{~cm} \\
& A O=\frac{1}{2} A C=\frac{1}{2} \times 4.6=2.3 \mathrm{~cm} \text { and } \\
& B O=\frac{1}{2} B D=\frac{1}{2} \times 6.2=3.1 \mathrm{~cm} .
\end{aligned}
$$

2. Produce $A O$ to C such that $O C=O A$
3. Produce $B O$ to D such that $O D=O B$.
4. Join $B C, C D, A D$.

Then, $A B C D$ is the required parallelogram.

3.5. CONSTRUCTING LOCI

Locus is the set of all points in a plane which satisfy one or more geometrical conditions.

Alternatively, locus of a moving point is the path traced by the point under a given set of geometrical conditions.

Important facts about locus

1. Every point which satisfies the given geometrical condition(s) lies on the locus.
2. Every point which lies on the locus satisfies the given geometrical condition(s).
Thus, a point P lies on locus $\Leftrightarrow P$ satisfies the given geometrical condition(s).
Example 7. Let $\left\{P_{1}, P_{2}, P_{3}, \ldots\right\}$ be the set of points in a plane such that their distance from a fixed point C in the plane is a positive constant r. Then, $C P_{1}=C P_{2}=C P_{3}=\ldots=r$.

Solution. We observe that the curve through all these point is a circle with the fixed point C as centre and the constant distance r as radius.

Conversely, if P is any point on the circle then
 its distance from the centre C is the radius r, i.e, $C P$ $=r$ for all points P on the circle.

Thus, a circle is the set of all points in a plane (i.e. locus) which are at a constant distance from a fixed point in the plane. The fixed point is the centre and the constant distance is the radius of the circle.

EXERCISE

1. Construct a quadrilateral $A B C D$ such that $A B=4.2 \mathrm{~cm}$, $B C=3.7 \mathrm{~cm}, C D=4.3 \mathrm{~cm}, A D=3.1 \mathrm{~cm}$ and $\angle A=60^{\circ}$.
2. Construct a quadrilateral $A B C D$ in which $A B=4.4 \mathrm{~cm}, B C=4 \mathrm{~cm}$, $C D=6.4 \mathrm{~cm}, A D=2.8 \mathrm{~cm}$ and $B D=6.6 \mathrm{~cm}$.
3. Draw a parallelogram $A B C D$ in which $A C=6.8 \mathrm{~cm}, B D=5 \mathrm{~cm}$ and an angle between them is 60°.
4. Construct a triangle $A B C$ in which $B C=8 \mathrm{~cm}, A B=5 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$. Mark a point P which is equidistant from $A B, B C$ and also from B and C.
5. Draw a line segment of length 6.6 cm . Bisect it and measure the length of each part.
6. Construct a $\triangle A B C$ in which $B C=3.6 \mathrm{~cm}, A B+A C=4.8 \mathrm{~cm}$ and $\angle B=60^{\circ}$.
